
Combined Ventilation Controller

RVWS-T-224HA

User's Guide

TABLE OF CONTENTS

	Page
PRECAUTIONS	3
FFATURES	4
LOCATION OF THE CONTROLS	6
Controller Status Leds	7
Internal Switches	
INSTALLATION	
Mounting Instructions	
Connections	
Motor Curves	9
Temperature Probes	11
CHANGING THE PARAMETER SETTINGS	13
Using the Display	
Locking the Parameters Settings	
TEMPERATURE SETTINGS	15
Temperature Units	
Viewing Temperatures	15
Temperature Set Point	18
Temperature Curve	19
VENTILATION SETTINGS	23
Cooling Operation	23
Minimum Ventilation Cycle	26
Humidity Compensation	28
Minimum Speed Curve	31
Differential Settings	37
Mist Cooling	40
NATURAL VENTILATION	
Principle of Operation	43
Curtain Operating Time Compensation	45
Settings	46
HEATER SETTINGS	49
ALARM SETTINGS	
TEST MODE	53
TROUBLESHOOTING GUIDE	54
TECHNICAL SPECIFICATIONS	
FACTORY SETTINGS	
GLOSSARY	61

PRECAUTIONS

We strongly recommend installing supplementary natural ventilation as well as a back-up thermostat on at least one cooling stage (refer to the wiring diagram enclosed with this user's manual to connect the thermostat).

Although fuses at the input and outputs of the controller protect its circuits in case of an overload or overvoltage, we recommend installing an additional protection device on the controller's supply circuit.

The room temperature where the controller is located MUST ALWAYS REMAIN BETWEEN 32°F AND 104°F (0°C TO 40°C).

To avoid exposing the controller to harmful gases or excessive humidity, it is preferable to install it in a corridor.

DO NOT SPRAY WATER ON THE CONTROLLER

FOR CUSTOMER USE

Enter the serial number located on the side of the controller below for future reference.

Model number:	RVWS-T-224HA
Serial number:	

FEATURES

The RVWS-T-224H is an electronic device used for environmental control in livestock buildings. It allows the user to maintain a specified target temperature by controlling the operation of ventilation and heating equipment. Two stages of variable speed fans, two stages of constant speed fans, as well as curtains, foggers and heaters can be connected to the controller.

The main features of the RVWS-T-224HA are as follows:

THREE-DIGIT DISPLAY

A three-digit display provides a high level of accuracy, allowing the user to specify a temperature to within one tenth of a degree (in Fahrenheit or Celsius units).

PILOT LIGHTS

Pilot lights indicating the state of outputs allow the user to monitor the operation of the system without having to enter the building.

MINIMUM VENTILATION CYCLE

When ventilation is not required for cooling, the first stage fans can be operated either continuously or intermittently to reduce the level of humidity and supply oxygen to the room.

TEMPERATURE AND MINIMUM VENTILATION SPEED CURVES

The controller can be set to automatically change the temperature set point and the minimum ventilation speed over a given period of time in accordance with the user's requirements by specifying a temperature curve and a minimum ventilation speed curve with up to six different points each.

CHOICE OF TEN MOTOR CURVES

The variation in motor speed resulting from a change in voltage will depend on the make and capacity of the motor. In order to achieve a high degree of compatibility between controller and motor, the user can choose from among ten different motor curves, thus ensuring that the correct voltage is supplied.

HIGH/LOW TEMPERATURE ALARM OUTPUT

HUMIDITY COMPENSATION

The stage 1 minimum speed can be adjusted automatically as a function of relative humidity. As humidity increases, the minimum speed of stage 1 fans increases proportionnally to compensate for the change.

FULL-SPEED FAN START-UP

In order to overcome the inertia of the ventilation system components and de-ice the fan blades in cold weather conditions, the controller supplies maximum voltage to the variable speed fans during the 2 seconds immediately following each start-up.

FOUR INDEPENDENT TEMPERATURE PROBE INPUTS

Up to four temperature probes can be connected to the controller in order to obtain a more accurate reading of the average room temperature and a faster reaction time.

OUTSIDE TEMPERATURE COMPENSATION ON CURTAIN SPEED

Curtain opening and closing times can be decreased as a function of outside temperature.

OVERLOAD AND OVERVOLTAGE PROTECTION

Fuses are installed at the input and outputs of the controller to protect its circuitry in the case of an overload or overvoltage.

COMPUTER CONTROL

The controller can be connected to a computer, thus making it possible to centralize the management of information and diversify control strategies.


CONTROL OF AIR INLET MOVEMENT

If the RVWS-T-224HA is used in combination with a DWR-F-1A controller, the movement of the air inlets can be coordinated with the operation of the fans using a potentiometer located on the panel drive. This allows the air inlets to be adjusted correctly, without the influence of uncontrollable factors such as wind or air from adjoining rooms.

TEST MODE

A test mode allows you to simulate temperature changes and verify controller performance.

LOCATION OF THE CONTROLS

CONTROLLER STATUS LEDS

LED	MEANING		
STAGES 1-2	FLASHES WHEN STAGE 1 FANS ARE ON. TURNS ON WHEN BOTH STAGES ARE ACTIVE.		
STAGES 3-4	FLASHES WHEN STAGE 3 IS ACTIVE. TURNS ON WHEN STAGE 4 IS ACTIVE.		
CURTAIN A	FLASHES WHEN CURTAIN A IS CLOSING. TURNS ON WHEN CURTAIN A IS OPENING.		
CURTAIN B	FLASHES WHEN CURTAIN A IS CLOSING. TURNS ON WHEN CURTAIN A IS OPENING.		
HEATER 1	TURNS ON WHEN HEATER 1 UNITS ARE ON.		
MIST-HEATER 2	FLASHES WHEN THE MIST UNITS ARE ON. TURNS ON WHEN HEATER 2 UNITS ARE ON.		
DEF. PROBE/ ALARM	TURNS ON WHEN AN ALARM IS DETECTED. BLINKS WHEN A DEFECTIVE PROBE IS DETECTED.		
R.H. COMP.	TURNS ON WHEN THE COMPENSATION ON STAGE 1 MINIMUM VENTILATION SPEED IS IN EFFECT OR WHEN THE COMPENSATION ON THE MIST STAGE IS IN EFFECT.		

INTERNAL SWITCHES

The internal switches are located on the inside of the front cover. When the controller is shipped from the factory, all the switches are set to OFF.

#	OFF	ON	
1	UNLOCKED PARAMETERS	LOCKED PARAMETERS	
2	FAHRENHEIT DEGREES	CELSIUS DEGREES	
3	PROBE 2 DISABLED	PROBE 2 ENABLED	
4	PROBE 3 DISABLED	PROBE 3 ENABLED	
5	PROBE 4 DISABLED	PROBE 4 DISABLED	
6	NO OFFSET ON VENT STAGES	2°F (1.1°C) OFFSET ON VENT STAGES	
7	MIST	HEATER 2	
8	RESERVED		
9	RESERVED		
10	RESERVED		
11	RESERVED		
12	NORMAL MODE	TEMPERATURE SIMULATION MODE	

INSTALLATION

MOUNTING INSTRUCTIONS

Open the latch and lift the cover. Remove the black caps located on each of the four mounting holes. Mount the enclosure on the wall using four screws. Be sure the electrical knockouts are at the bottom of the enclosure in order to prevent water from entering the controller. Insert the screws in the mounting holes and tighten. Fasten the four black caps provided with the controller onto the four mounting holes. The enclosure must be mounted in a location that will allow the cover to be completely opened right up against the wall.

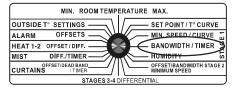
CONNECTIONS

To connect the controller, refer to the wiring diagram enclosed with this user's manual.

- Set the voltage switch to the appropriate voltage.
- Use the electrical knockouts provided at the bottom of the enclosure. Do not make additional holes in the enclosure, particularly on the side of the enclosure when using a computer communications module.
- It may be necessary to install a transformer in order to supply the appropriate voltage to the heating unit.

ALARM CONNECTION: There are two types of alarms on the market. One type activates when current is cut off at its input, whereas the other activates when current is supplied at its input. For an alarm of the first type, use the NO terminal as shown on the wiring diagram. For an alarm of the second type, use the NC terminal.

ALL WIRING MUST BE DONE BY AN AUTHORIZED ELECTRICIAN AND MUST COMPLY WITH APPLICABLE CODES, LAWS AND REGULATIONS. BE SURE POWER IS OFF BEFORE DOING ANY WIRING TO AVOID ELECTRICAL SHOCKS AND EQUIPMENT DAMAGE.


MOTOR TYPES

The relationship between the voltage supplied to a motor and its operating speed is described by a motor curve. This curve varies with the make and capacity of the motor. The various motors available in the industry have been divided into ten categories and the controller has been programmed with a different motor curve for each of these categories. To ensure that the controller supplies the correct voltages, an appropriate curve must be selected for Stages 1 and 2 according to the type of fan motors used.

Selecting a Motor Type for Stage 1

Refer to the list of motors enclosed with this user's manual to determine which curve number (1 to 10) is appropriate for the type of motors used.

Set the selection knob to STAGE 1 — BANDWIDTH/ TIMER. The Stage 1 bandwidth is displayed and flashes.

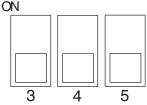
- Press the push-button three times. The currently selected type is displayed, alternating with the letters "tYP".
- Use the adjustment knob to adjust the motor type to the desired value.
- Return to the Stage 1 bandwidth display by pressing the push-button once again.

Selecting a Motor Type for Stage 2

Refer to the list of motors enclosed with this user's manual to determine which curve number (1 to 10) is appropriate for the type of motors used.

- Set the selection knob to STAGE2—OFFSET/BANDWIDTH/MIN. SPEED. The Stage 2 bandwidth is displayed and flashes.
- Press the push-button three times. The currently selected type is displayed, alternating with the letters "tYP".
- Use the adjustment knob to adjust the motor type to the desired value.
- Return to the Stage 2 bandwidth display either by pressing the pushbutton once again.

TEMPERATURE PROBES


1 Connecting the Probes

The controller is supplied with one temperature probe connected to input # 1. Three additional room probes can be connected to inputs # 2, 3 and 4 and an outside probe can be connected to input # 5 (see wiring diagram enclosed).

CAUTION: Probes operate at low voltage and are isolated from the supply. Be sure that probe cables remain insulated from all high voltage sources. In particular, do not route the probe cables through the same electrical knockout as other cables. Do not connect the shield from the probe cable to a terminal or a ground.

Switches are used to activate or deactivate the additional probes connected to the controller.

Activate each additional probe by setting the appropriate switch to ON:

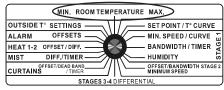
- Switch # 3 activates the probe connected to input # 2.
- Switch # 4 activates the probe connected to input # 3.
- Switch # 5 activates the probe connected to input # 4.

2 Extending the Probes

Each probe can be extended up to 500 feet (150 meters). To extend a probe:

- Use a shielded cable of outside diameter between 0.245 and 0.260 in (6.22 and 6.60 mm) (the cable dimensions should not be under 18 AWG) to ensure the cable entry is liquid tight. Do not ground the shielding.
- It is preferable to solder the cable joint to ensure a proper contact between the two cables.

CAUTION: Do not run probe cables next to other power cables. When crossing over other cables, cross at 90°.

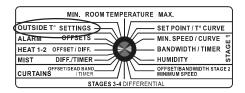

3 Installing the Outside Probe

- Run the outside probe cable on the north side of the building, 6 ft (2 m) below the eave, inside a pale colored conduit. Avoid installing the probe in direct sunlight or exposed to the rain.
- Be sure the probe cable is isolated from sheet metal or any other conductive material.
- Be sure no cable joint is exposed to air or water.

4 Defective Probes

If a defective probe is detected, the Defective Probe Pilot Light flashes. The room temperature shown on the display is then the average temperature measured by the probes in working condition. The controller will operate according to this temperature. To identify the defective probe:

Set the selection knob to ROOM TEMPERATURE. The room temperature is displayed.



Press the push-button. If the probe connected to input # 1 and supplied with the controller is not defective, the letters "PR1" are displayed, alternating with the on/off state of the probe and the temperature measured by the probe. If the probe is defective, the letters "PR1" are displayed, alternating with the state of the probe and the letter "P".

For each additional probe connected to the controller:

Press the push-button once again. If the probe <u>is not</u> defective, the letters "PR#" (where # is the number of the input to which the probe is connected) are displayed, alternating with the on/off state of the probe and the temperature measured by the probe. If the probe <u>is</u> defective, the letters "PR#" are displayed, alternating with the on/off state of the probe and the letter "P".

Outside Probe: If the outside probe is defective, the display shows the letter "P" when the parameter selection knob is set to **OUTSIDE T**°.

CHANGING THE PARAMETER SETTINGS

USING THE DISPLAY

Flashing Values: The display will flash in certain cases and not in others. The flashing indicates that the value shown can be adjusted. Avalue that is not flashing cannot be adjusted.

Relative and Absolute Values: Some parameter adjustments are displayed both as a relative value and an absolute temperature. This applies to all heating and cooling differentials, the mist differential and the heater offset. The parameter is first displayed as a relative value. The corresponding absolute temperature is displayed after six seconds if no action is taken by the user. The absolute value is the temperature at which the stage turns on (except in the case of the heater and mist offsets where the value displayed is the temperature at which the stage turns off). If the user turns the adjustment knob, the relative value reappears. For example, when the user turns the selection knob to a differential position, i.e. DIFFERENTIALS 3-4, the sequence is as follows:

(i) The current differential for stage 3 flashes on the display, alternating with "St. 3".

(ii) If, after about 6 seconds, no action is taken by the user, the absolute temperature value is displayed, alternating with "St. 3". In this case, the absolute value is: Set Point + Bandwidth 1 + Offset 2 + Bandwidth 2 + Differential 3.

(iii) When the user turns the adjustment knob to make an adjustment to the stage 3 differential, the relative value reappears on the display.

In the case of the mist and heating units, the starting temperature is displayed with the letters "STr" when adjusting the differential and the stopping temperature is displayed with the letters "STP" when adjusting the offset.

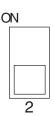
LOCKING THE PARAMETER SETTINGS

The parameter settings can be locked to prevent accidentally modifying them. When the settings are locked, only the temperature set point and the Stage 1 minimum ventilation speed can be modified (as long as the temperature curve and the minimum ventilation speed curve are deactivated respectively).

To lock the parameter settings:

Set internal switch # 1 to ON.

To unlock the parameter settings:

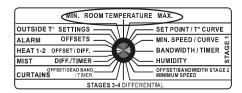

Set internal switch # 1 to OFF.

TEMPERATURE SETTINGS

TEMPERATURE UNITS

Temperatures can be displayed in either Celsius or Fahrenheit units

- Set internal switch # 2 to the desired position:
- ON to display temperatures in Celsius units.
- **OFF** to display temperatures in Fahrenheit units.


VIEWING TEMPERATURES

To display the desired temperature, set the selection knob to **ROOM TEMPERATURE**. The readout can display values from -40.0°F to 120.0°F (-40.0°C to 48.9°C).

1 Viewing Room Temperature

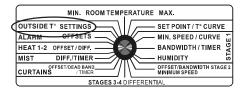
The room temperature is the average value of all temperatures measured by activated probes in proper operating condition.

Set the selection knob to ROOM TEMPERATURE. The room temperature is displayed.

2 Viewing Probe Temperatures

The controller can display probe temperatures individually. Probes can also be turned on or off to control the temperature in different parts of the building.

Set selection knob to ROOM TEMPERATURE. The average room temperature is displayed.


- Press the push-button. The temperature reading from probe 1 is displayed, alternating with the letters "Pr 1" and the on/off state of probe 1.
- For each additional probe, press the push-button. The temperature reading from probe x is displayed, alternating with the letters "Pr x" and the on/off state of the probe, etc.

Note: The display returns to the average room temperature after one minute.

3 Viewing OutsideTemperature

The outside temperature can be viewed only if a probe is connected to input #5.

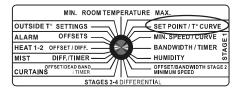
Set the selection knob to OUTSIDE To SETTINGS. The outside temperature is displayed.

4 Viewing Minimum / Maximum Temperatures

The minimum and maximum temperatures are the lowest and highest temperature values recorded since the last reset. Maximum and minimum temperatures values are recorded for the average room temperature as well as for individual probe temperatures.

- Set the selection knob to ROOM TEMPERATURE. The room temperature is displayed.
- Turn the adjustment knob clockwise by one notch. The minimum temperature flashes on the display, alternating with the letters "**Lo**".
- Turn the adjustment knob clockwise one notch further. The maximum temperature flashes on the display, alternating with the letters "**Hi**".

- Turn the adjustment knob clockwise a third notch. The room temperature is displayed again.
- For each individual probe, press the push-button. The temperature reading from probe x is displayed, alternating with the letters "Pr x" and the on/off state of the probe.
- Turn the adjustment knob clockwise by one notch. The minimum temperature is displayed, alternating with the letters "Lo".
- Turn the adjustment knob clockwise one notch further. The maximum temperature is displayed, alternating with the letters "**Hi**".
- Turn the adjustment knob clockwise a third notch. The probe temperature is displayed again.
- Press the push-button to access the other probes, etc.

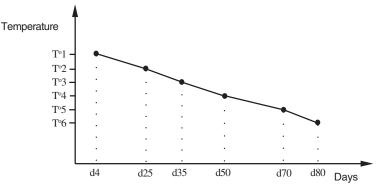

NOTE: If you let the display flash for more than 10 seconds, the controller resets all minimum and maximum temperatures currently in memory (the display stops flashing to indicate that the reset has been done).

TEMPERATURE SET POINT

The temperature set point is the target room temperature. It can be adjusted between -40.0°F and 99.9°F (-40.0°C and 37.7°C).

Adjusting Temperature Set Point

Set the selection knob to SET POINT / T° CURVE. The current set point flashes on the display.

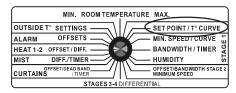


Use the adjustment knob to adjust the set point to the desired value.

NOTE: The temperature set point can be adjusted only if the temperature curve is deactivated (see following section).

TEMPERATURE CURVE

The user can define a temperature curve to adjust the set point automatically over a given time period.


A curve is defined using six points. Each point specifies a day number and a set point for that day. Once the points of the curve are defined, the curve must be activated. The controller will change the temperature set point every hour in a linear fashion between consecutive points of the curve. When the last point of the curve is reached, the temperature set point for that day is maintained until the curve is reactivated.

NOTES:

- i) All six points of the curve must be specified. If six points are not needed, repeat the last temperature value for each unnecessary point.
- ii) Certain restrictions apply to reduce the risk of errors:
 - The highest possible day number is 200.
 - Decreasing day numbers are not allowed.
 - Increasing temperatures are not allowed.
 - The temperature variation cannot exceed $3^{\circ}F$ (1.6°C) per day.

Specifying the Curve

Set the selection knob to SET POINT / TO CURVE. The current temperature set point flashes on the display.

Press the push-button. The word **OFF** is displayed indicating that the termperature curve is deactivated. If this is not the case, see below to deactivate the curve.

Repeat the following steps for each of the six points:

- Press the push-button once again. The day number is displayed, alternating with the word "dAY.
- Using the adjustment knob, set the day number to the desired value.
- Press the push-button once again. The current temperature set point is displayed, alternating with the word "SEt".
- Using the adjustment knob, adjust the set point to the desired value.

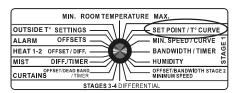
Once the six points of the curve have been specified, activate the curve as explained below.

NOTE: Make sure the temperature curve is deactivated before specifying new points (see below).

Activating Temperature Curve

If you have just finished specifying the points on the curve:

- Press the push-button once again. The word OFF flashes on the display.
- Turn the adjustment knob clockwise one notch. The word **ON** flashes on the display and the Temperature Curve Pilot Light flashes, indicating that the temperature curve is now activated.
- Set the selection knob to **ROOM TEMPERATURE**.


If you have previously defined the points on the curve:

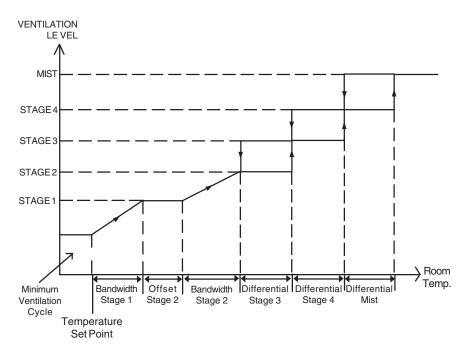
- Set the selection knob to SET POINT / To CURVE. The current value of the temperature set point flashes on the display.
- Press the push-button. The word **OFF** is displayed.
- Press the push-button to display the points of the curve currently defined until the word **OFF** appears (thirteen clicks).
- Turn the adjustment knob clockwise one notch. The word **ON** flashes on the display and the Temperature Curve Pilot Light flashes, indicating that the temperature curve is now activated.
- Set the selection knob to **ROOM TEMPERATURE**.

Viewing Current Set Point and Day Number

When the temperature curve is activated, the current temperature set point and day number can be viewed at any time. The current day number can also be adjusted in order to move forward or backward on the temperature curve.

Set the selection knob to SET POINT / To CURVE. The current temperature set point flashes on the display.

- Press the push-button. The current day number is displayed, alternating with the letters "cur. day".
- Use the adjustment knob to set the day number to the desired value.


Deactivating Temperature Curve

- Set the selection knob to SET POINT / To CURVE. The current temperature set point is displayed.
- Press the push-button to display the points of the curve actually defined until the word **ON** appears (fourteen clicks).
- Turn the adjustment knob counterclockwise one notch. The word **OFF** flashes on the display and the Temperature Curve Pilot Light turns off, indicating that the temperature curve is now deactivated.
- Set the selection knob to **ROOM TEMPERATURE**.

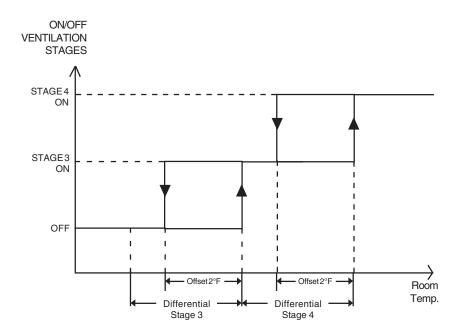
VENTILATION SETTINGS

COOLING OPERATION

The RVWS-T-224HA controls two stages of variable-speed fans (stages 1-2), two stages of constant-speed fans (stages 3-4) and one optional mist stage.

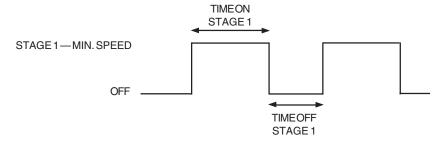
If room temperature rises:

- When room temperature < Set Point, stage 1 fans run at minimum speed according to the minimum ventilation cycle.
- At Set Point: stage 1 fans stop operating according to the minimum ventilation cycle and increase in speed as the room temperature rises.
- At Set Point + Bandwidth 1: stage 1 fans reach full speed.
- At Set Point + Bandwidth 1 + Stage 2 Offset: stage 2 fans start running.


- At Set Point + Bandwidth 1 + Stage 2 Offset + Bandwidth 2: stage 2 fans reach maximum speed.
- At Set Point + Bandwidth 1 + Stage 2 Offset + Bandwidth 2 + Diff. 3: stage 3 fans start running.
- At Set Point + Bandwidth 1 + Stage 2 Offset + Bandwidth 2 + Diff. 3 + **Diff. 4**: stage 4 fans start running.
- At Set Point + Bandwidth 1 + Stage 2 Offset + Bandwidth 2 + Diff. 3 + Diff. 4 + Mist Diff: the mist stage starts.

If the room temperature decreases *:

- At Set Point + Bandwidth 1 + Stage 2 Offset + Bandwidth 2 + Diff. 3 + **Diff. 4**: the mist stage stops.
- At Set Point + Bandwidth 1 + Stage 2 Offset + Bandwidth 2 + Diff. 3: stage 4 fans return to a stop.
- At Set Point + Bandwidth 1 + Stage 2 Offset + Bandwidth 2: stage 3 fans return to a stop; stage 2 fans start decreasing in speed as the temperature decreases.
- At Set Point + Bandwidth 1 + Stage 2 Offset: the stage 2 fans return to a stop.
- At Set Point + Bandwidth 1: Stage 1 fans start decreasing in speed as the temperature decreases.
- At Set Point: the Stage 1 fans reach minimum speed.
- Below the Set Point: the stage 1 fans stop operating continuously and operate according to the minimum ventilation cycle at minimum speed.


* USING A FIX OFFSET ON ON/OFF FAN STAGES 3-4:

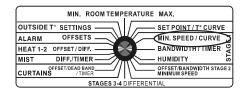
This function allows to deactivate stage 3 and 4 when the temperature decreases 2°F (1.1°C) below their respective differential. Set the internal switch #6 to ON to activate this function.

MINIMUM VENTILATION CYCLE

When the room temperature is below the set point, the Stage 1 fans operate according to the minimum ventilation cycle. Running the fans even though ventilation is not required for a cooling purpose is useful to reduce humidity levels and supply oxygen to the room. It also prevents the fans from freezing in winter.

During time on, the Stage 1 fans run at Stage 1 minimum speed. The Stage 1 Pilot Light turns on. During time off, the Stage 1 fans do not run. The Stage 1 Pilot Light turns off. The Stage 1 minimum speed can also be defined by a speed curve (see below).

NOTE: The controller supplies maximum voltage to the variable-speed fans for 2 seconds immediately following each start-up.

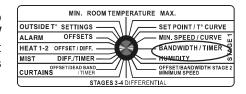

Minimum Ventilation Cycle Settings

- 1. To run the fans continuously at minimum speed, set time off to zero and time on to any value other than zero.
- 2. To stop the fans, set time on to zero and time off to any value.
- 3. To run the fans intermittently, set time on to the desired running time and time off to the desired off time.

1 Adjusting Minimum Speed

The minimum speed can be adjusted between 10 and 100% of the full speed of the fans.

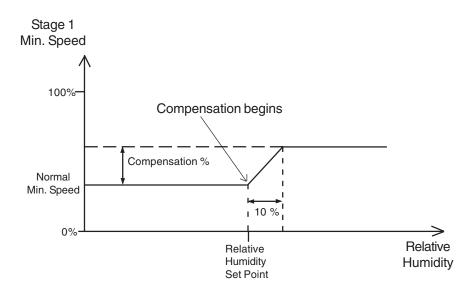
Set the selection knob to STAGE 1 — MINIMUM SPEED/CURVE. The current minimum speed for Stage 1 flashes on the display.


Use the adjustment knob to adjust the minimum speed to the desired value.

NOTE: The minimum speed can be adjusted only if the minimum speed curve is deactivated or if the minimum speed curve is activated but not currently operating (see below).

2 Adjusting Stage 1 Time On and Time Off

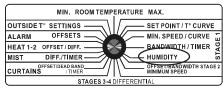
Time On and Time Off can be adjusted between 0 and 900 seconds, in increments of 15 seconds.


Set the selection knob to STAGE 1 — BANDWIDTH/ TIMER. The current bandwidth for stage 1 flashes on the display.

- Press the push-button. The current time on for Stage 1 flashes on the display, alternating with the letters "On".
- Use the adjustment knob to adjust time on to the desired value.
- Press the push-button. The current time off for Stage 1 flashes on the display, alternating with the letters "Off".
- Use the adjustment knob to adjust time off to the desired value.

HUMIDITY COMPENSATION

The stage 1 minimum speed can be adjusted automatically as a function of relative humidity. As humidity increases, the stage 1 minimum speed increases proportionally to compensate for the change. At humidity levels at or below the humidity set point, stage 1 minimum speed is equal to the normal uncompensated speed. The user specifies the percentage increase in minimum speed for a relative humidity equal to the humidity set point + 10%. For example, if the minimum speed is 40% and the compensation adjustment is 30%, the minimum speed will be adjusted to 70% of full speed when the humidity rises 10% above the humidity set point. In addition to adjusting the minimum speed, the humidity compensation feature also changes the operation of the minimum ventilation cycle: if the controller is operating in minimum ventilation mode when the relative humidity exceeds the humidity set point, the minimum ventilation fans are operated continuously rather than cycled.



This feature also applies when the minimum ventilation speed is activated. Note that for the compensation to take place, the compensation feature must be activated by the user. When a compensation is applied to the minimum speed, the compensation pilot light turns on.

Viewing Relative Humidity

The relative humidity is expressed as a percentage.

Set the selection knob to STAGE 1 — HUMIDITY. The current relative humidity is displayed.

- Turn the adjustment knob clockwise by one notch. The minimum humidity flashes on the display, alternating with the letters "Lo".
- Turn the adjustment knob clockwise one notch further. The maximum humidity flashes on the display, alternating with the letters "Hi".
- Turn the adjustment knob clockwise a third notch. The current humidity value is displayed again.

NOTE: If you let the display flash for more than 10 seconds when the maximum or minimum humidity is displayed, the controller resets the minimum and maximum humidity values currently in memory (the display stops flashing to indicate that the reset has been done).

Adjusting Relative Humidity Set Point

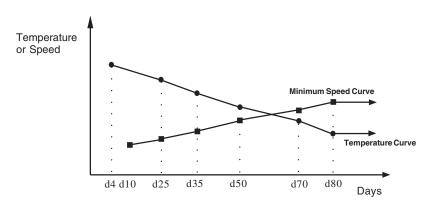
When the relative humidity exceeds the humidity set point, stage 1 minimum speed is increased by a proportional amount to compensate for the increase in humidity. Note that the humidity compensation feature must be activated for this to work.

- Set the selection knob to **STAGE 1**—**HUMIDITY**. The current humidity reading is displayed.
- Press the push-button. The relative humidity set point is displayed, alternating with the letters "SEt rH".
- Use the adjustment knob to adjust the set point to the desired value.

Adjusting Minimum Speed Compensation

This is the percentage increase in stage 1 minimum speed for a relative humidity equal to the humidity set point + 10%. The value ranges from 0 to 100%.

- Set the selection knob to **STAGE 1**—**HUMIDITY**. The current humidity reading is displayed.
- Press the push-button twice. The current minimum speed compensation is displayed, alternating with the letters "SPd".
- Use the adjustment knob to adjust the minimum speed compensation to the desired value.


Activating / Deactivating Humidity Compensation

- Set the selection knob to **STAGE 1**—**HUMIDITY**. The current humidity reading is displayed.
- Press the push-button three times. The current on/off state of humidity compensation flashes on the display.
- Use the adjustment knob to adjust the on/off state to the desired value.

MINIMUM VENTILATION SPEED CURVE

The user can define a minimum ventilation speed curve to adjust the Stage 1 minimum speed automatically over a given time period. Each curve is defined by six points. Each point specifies a day number and a fan speed for that day. Once the points are defined, the minimum speed curve must be activated. When the minimum speed curve is activated, the controller adjusts the Stage 1 minimum speed every hour in a linear fashion between two consecutive points.

When the last point of the curve is reached, the curve is deactivated. The controller maintains the minimum speed specified for this point until the curve is reactivated or until a new single minimum speed is specified using the first method.

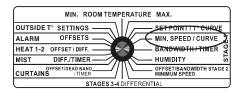
Interaction Between Temperature and Minimum Speed Curves

- The minimum speed curve can be activated only if the temperature curve is already activated
- All points of the minimum speed curve other than the first one are automatically given day numbers identical to those specified for the temperature curve. Only the first point of the minimum speed curve has an adjustable day number. This day number must be greater or equal to the day number specified for the first point of the temperature curve and less than the day number specified for the second point of the temperature curve (see example 1).

EXAMPLE 1

	TEMPERATURE CURVE	MINIMUM SPEED CURVE	
POINT 1	d5	d5 to d19 (adjustable)	
POINT 2	d20	d20 (not ajustable)	

When the minimum speed curve is activated, it will effectively be operating (i.e. the controller will begin to adjust the minimum speed according to the specified points of the curve) only when the current day number of the temperature curve reaches the first day number of the minimum speed curve.


EXAMPLE 2

	TEMPERATURE CURVE		MINIMUM SP	EED CURVE
	Day	Temperature	Day	Speed
POINT 1	d5	90.0 °F	d10	10 %
POINT 2	d20	85.0 °F	d20	20 %

- If you activated the temperature curve yesterday, the current day number of the temperature curve is d6. Therefore, if you activate the minimum speed curve today, it will effectively be in operation in 4 days, when the current day number of the temperature curve reaches d10. In the meantime, the fans will run at the specified single minimum speed (see example 2).
- If you activated the temperature curve six days ago, the current day number of the temperature curve is d11. Therefore, if you activate the minimum speed curve today, it will effectively be in operation the moment you activate it. In this case, the current minimum speed will be a value between 10% and 20%.

1 Specifying Minimum Speed Curve

Set the selection knob to STAGE 1 — MIN. SPEED / CURVE. The current minimum speed flashes on the display.

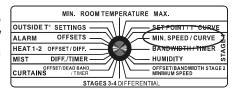
Press the push-button. The word OFF is displayed, indicating that the minimum speed curve is deactivated. If this is not the case, deactivate the curve as described below.

Repeat the following steps for each of the six points:

- Press the push-button once again. A day number is displayed, alternating with the word "day".
- For the first point of the curve, use the adjustment knob to adjust the day number to the desired value. For all other points of the curve, the day number can not be adjusted.
- Press the push-button once again. The minimum speed for that day is displayed, alternating with the letters "SPd".
- Use the adjustment knob to adjust the minimum speed to the desired value.

NOTES:

- i) The minimum speed curve must be deactivated before specifying the points on the curve (see below).
- ii) All six points of the curve must be specified. If you do not need six different points, repeat your last minimum speed for each unnecessary point of the curve.
- iii) Certain restrictions apply to reduce the risk of errors:
 - decreasing minimum speeds are not allowed.
 - the minimum speed variation cannot exceed 10% per day.


2 Activating Minimum Speed Curve

If you have just finished specifying the points on the curve:

- Press the push-button once again. The word OFF flashes on the display.
- Turn the adjustment knob clockwise by one notch. The word **ON** flashes on the display and the Minimum Speed Curve Pilot Light turns on, indicating that the minimum speed curve is now activated.

If you have previously specified the points on the curve:

Set the selection knob to STAGE 1 — MIN. SPEED / CURVE. The current minimum speed is displayed.

- Press the push-button to display the points of the curve currently defined until the word **OFF** appears (fourteen clicks).
- Turn the adjustment knob clockwise by one notch. The word **ON** flashes on the display and the Minimum Speed Curve Pilot Light turns on, indicating that the minimum speed curve is now activated.

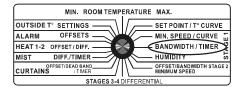
3 Viewing Current Minimum Speed and Day

When the minimum speed curve is activated, the current minimum speed and day number can be viewed at any time. To modify the day number, refer to the section on temperature curves.

■ Set the selection knob to **STAGE 1** — **MIN. SPEED / CURVE**. The current minimum speed is displayed.

Press the push-button. The current day is displayed, alternating with the letters "cur. dAY".

Deactivating Minimum Speed Curve

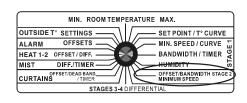

- Set the selection knob to STAGE 1 MIN. SPEED / CURVE. The current minimum speed is displayed.
- Press the push-button to display the points of the curve currently defined until the word **ON** appears (fourteen clicks).
- Turn the adjustment knob counterclockwise by one notch. The word OFF flashes on the display and the Minimum Speed Curve Pilot Light starts blinking, indicating that the minimum speed curve is now deactivated.

DIFFERENTIAL SETTINGS

1 Adjusting Stage 1 Bandwidth

The Stage 1 bandwidth is the temperature interval within which the Stage 1 variable speed fans increase or decrease in speed proportionally to the temperature (see the diagram above). The bandwidth can be adjusted between 0.5°F and 20.0°F (0.3°C and 11.1°C) and it cannot be set to a greater value than the curtain's offset.

Set the selection knob to STAGE 1 — BANDWIDTH/ TIMER. The current bandwidth for Stage 1 flashes on the display.

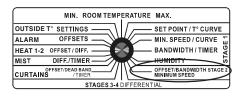


Use the adjustment knob to adjust bandwidth to the desired value.

2 Adjusting Stage 2 Offset

The Stage 2 offset is the temperature difference from the set point at which the Stage 2 variable-speed fans start to run at Stage 2 minimum speed. (see the diagram above). The offset can be adjusted between 0°F and 20.0°F (0°C and 11.1°C).

Set the selection knob to STAGE 2 — OFFSET/
BANDWIDTH/MIN.SPEED.
The current offset for Stage 2 flashes on the display, alternating with the letters "OFT".



■ Use the adjustment knob to adjust the offset to the desired value.

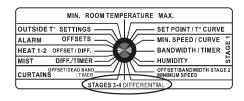
Adjusting Stage 2 Bandwidth

The Stage 2 bandwidth is the temperature interval within which the Stage 2 variable speed fans increase or decrease in speed proportionally to the temperature (see the diagram above). The bandwidth can be adjusted between 0.5°F and 20.0°F (0.3°C and 11.1°C).

Set the selection knob to STAGE 2 — OFFSET/ BANDWIDTH/MIN.SPEED. The current offset for Stage 2 is displayed, alternating with the letters "OFT".

- Press the push-button. The current bandwidth for Stage 2 is displayed, alternating with the letters "bd".
- Use the adjustment knob to adjust the bandwidth to the desired value.

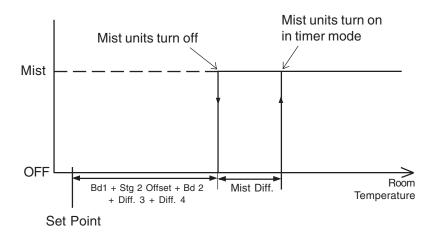
Adjusting Stage 2 Minimum Speed


The minimum speed can be adjusted between 10% and 100% of the full speed of the fans.

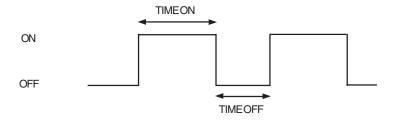
- Set the selection knob to STAGE 2 OFFSET/BANDWIDTH/ MIN.SPEED. The current offset for Stage 2 is displayed, alternating with the letters "OFT".
- Press the push-button twice. The current minimum speed for Stage 2 flashes on the display.
- Use the adjustment knob to adjust the minimum speed to the desired value.

5 Adjusting Stage 3 - 4 Differentials

The Stage 3-4 cooling differentials are the temperature differences between the moment the constant-speed fans start to run and the moment they turn off for each stage (see the diagram above). The differentials can be adjusted between $0.5^{\circ}F$ and $20.0^{\circ}F$ ($0.3^{\circ}C$ and $11.1^{\circ}C$).

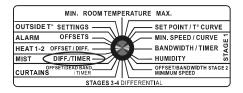

Set the selection knob to COOLING — DIFFERENTIAL 3-4. The current differential for Stage 3 flashes on the display, alternating with the letters "St 3".

- Use the adjustment knob to adjust the differential to the desired value.
- Press the push-button. The current differential for Stage 4 flashes on the display, alternating with the letters "St 4".
- Use the adjustment knob to adjust the differential to the desired value.


MIST COOLING

The last cooling stage can be configured as a mist stage. To activate mist cooling, set internal switch #7 to OFF. If the second heater stage is used, the mist cannot be configured.

If the humidity compensation is activated, the mist units are turned off when the humidity reaches a user-defined maximum humidity level.


The mist units operate according to a timer cycle. Time on is the running time of the mist units and time off is the off time of the mist units. If a mist stage is not needed, time off should be set to zero.

1 Adjusting Mist Differential

The mist differential is the temperature difference from differential 4 at which the mist units turn on. The hysteresis is fixed at 1.0°F.The differential can be adjusted between 0.5°F and 20.0°F (0.3°C and 11.1°C).

Set the parameter selection knob to MIST — DIFF./ TIMER. The current mist differential is displayed, alternating with the letters "dif".

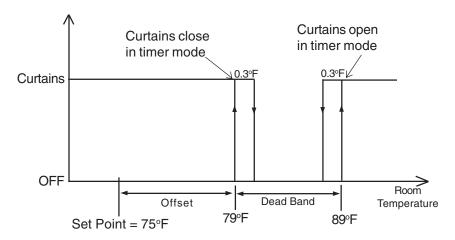
Using the adjustment knob, set the differential to the desired value.

2 Adjusting Mist Timer Settings

Time on and time off can be adjusted between 0 and 900 seconds, in increments of 15 seconds. To deactivate mist cooling, set time on to zero.

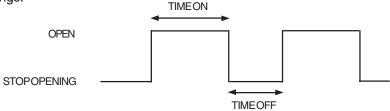
- Set the parameter selection knob to MIST DIFF./TIMER. The current mist differential is displayed, alternating with the letters "dif".
- Press the push-button. The current time on flashes, alternating with the letters "On".
- Use the adjustment knob to set time on to the desired value.
- Press the push-button. The current time off flashes, alternating with the letters "Off".
- Use the adjustment knob to set time off to the desired value.

Adjusting Humidity Turn Off Level

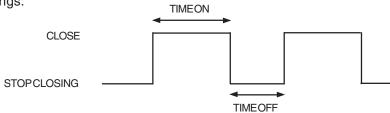

The humidity turn off level is the humidity level at which mist units are turned off. This parameter is not displayed unless humidity compensation is activated (see Humidity Compensation). The value ranges from 40 to 100%. When the mist units are turned off, the compensation pilot light turns on.

- Set the parameter selection knob to **MIST DIFF./TIMER**. The current mist differential is displayed, alternating with the letters "dif".
- Press the push-button three times. The current turn off level flashes on the display.
- Use the adjustment knob to set the turn off level to the desired value.

NATURAL VENTILATION


PRINCIPLE OF OPERATION

The RVWS-T-224HA controls two curtains. Both curtains share the same Offset and Dead Band and timer settings but each curtain operates according to its own temperature probes: Curtain A operates according to the average temperature of probes 1 & 2. Curtain B operates according to the average temperature of probes 3 & 4.


In the example above, when the temperature rises to 89°F, the curtains begin to open and continue to do so until fully open if the temperature remains above this point. If the temperature falls to 88.7°F, the curtains stop opening.

The curtains open intermittently according to the time on and time off settings:

When the temperature falls to 79°F, the curtains begin to close and continue to do so until fully closed if the temperature remains below this point. If the temperature rises to 79.3°F, the curtains stop closing.

The curtains close intermittently according to the time on and time off settings:

CURTAIN OPERATING TIME COMPENSATION

1. Normal Mode (Without Compensation)

The curtains open and close intermittently according to the specified opening time, closing time and time off, as described on the preceding pages. There is no outside temperature compensation.

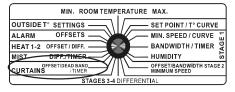
2. Progressive Mode (With Compensation)

The controller can use the current outside temperature to adjust the opening and closing times of the curtains. This feature must be activated from the front panel (see below). An outdoor temperature probe must be connected to input #5 for this feature to work.

Temperature Rises: When the curtains open, the controller increases TIME ON by 5% for every 1°F (0.6°C) difference between the outside temperature and the outside Set Point. The TIME OFF is decreased by the same amount.

The higher the outside temperature, the time on increases, causing the curtains to open faster.

Temperature Falls: When the curtains close, the controller increases TIME ON by 5% for every 1°F (0.6°C) difference between the outside temperature and the outside Set Point. TIME OFF is decreased by the same amount.


The lower the outside temperature, time on increases, causing the curtains to close faster.

NOTE: If, after compensation, the time off value is less than or equal to ten seconds, it is set to zero.

SETTINGS

1 Manual Operation of the Curtains

Set the selection knob to CURTAINS - OFFSET/DEAD BAND/TIMER. The current curtain offset flashes on the display, alternating with the word "Oft".

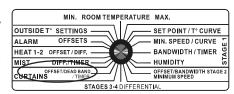
- Press the push-button 4 times. The current curtains' operation mode is displayed. Use the adjustment knob to select the proper mode:
 - "AUt." for the automatic mode;
 - "OPE" to manually open the curtains (the display flashes "OPE" and the curtains start opening after 5 seconds;
 - "CLO" to manually close curtains (the display flashes "CLO" and the curtains start closing after 5 seconds.

2 Adjusting Curtains Offset

The offset is the number of degrees, above the set point, at which curtains start closing in timer mode (refer to the previous graphic). It can be adjusted from 2.0 to 20.0°F (1.1 to 11.1°C) and must be greater than bandwidth 1.

- Set the selection knob to **CURTAINS OFFSET/DEAD BAND/ TIMER**. The current curtain offset flashes on the display, alternating with the word "**Oft**".
- Use the adjustment knob to set the offset to the desired value.

3 Adjusting the Curtains Dead Band

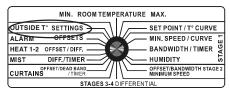

The dead band is the temperature difference between the opening and closing temperatures of the curtains. The hysteresis is fixed at $0.3^{\circ}F$ and determines when the curtains stop operating. The dead band can go from $0.5^{\circ}F$ to $20.0^{\circ}F$ ($0.3^{\circ}C$ to $11.1^{\circ}C$).

- Set the selection knob to CURTAINS OFFSET/DEAD BAND/ TIMER. The current curtain offset flashes on the display, alternating with the word "Oft".
- Press the push-button. The current curtain dead band flashes on the display, alternating with the word "dEb".
- Use the adjustment knob to set the dead band to the desired value.

4 Adjusting the Curtains Timer

The time on and time off parameters can take values from 0 to 900 seconds.

Set the selection knob to CURTAINS — OFFSET/ DEAD BAND/TIMER. The current curtain offset flashes on the display, alternating with the word "Oft".

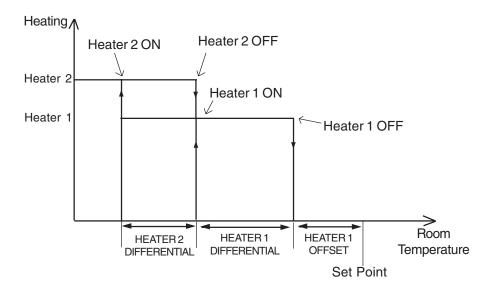


- Press the push-button twice. The current time on is displayed, alternating with the letters "On".
- Use the adjustment knob to set time on to the desired value.
- Press the push-button once again. The current time off is displayed, alternating with the letters "Off".
- Use the adjustment knob to set time off to the desired value.

Adjusting the Outside Set Point

The outside set point is used for compensating curtain operating times as a function of outside temperature (see above). It can be adjusted between -40.0°F and 99.9°F (-40.0°C and 37.7°C).

Set the selection knob to **OUTSIDE T° — SETTINGS.** The current outside temperature is displayed.


- Press the push-button. The current outside set point is displayed, alternating with the letters "set".
- Use the adjustment knob to set the outside set point to the desired value.

Activating Outside Temperature Compensation

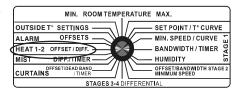
- Set the selection knob to **OUTSIDE T° SETTINGS**. The current outside temperature is displayed.
- Press the push-button twice. The current on/off state of the outside compensation feature is displayed.
- Use the adjustment knob to turn the compensation on or off.

HEATER SETTINGS

The heaters operate according to the average temperature from all activated probes. The last stage can either be configured as a mist or heating stage. Set internal switch #7 to ON to use the last stage as a supplementary heating stage.

If the room temperature rises:

- at Set Point Heater 1 Offset Heater 1 Diff.: Heater 2 turns off.
- at Set Point Heater 1 Offset: Heater 1 turns off.


If the room temperature falls:

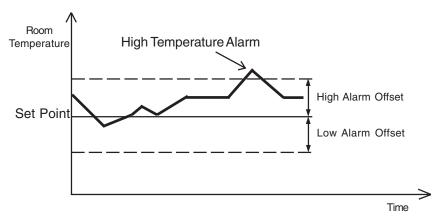
- at Set Point Heater 1 Offset Heater 1 Diff.: Heater 1 turns on.
- at Set Point Heater 1 Offset Heater 1 Diff. Heater 2 Diff.: Heater 2 turns on.

1 Adjusting Heater Offset

The heater offset can provide substantial energy savings if correctly adjusted according to the outside temperature. It is the number of degrees below the set point at which the heating units turn off (see diagram above). The heater offset can be adjusted between -10°F and 20.0°F (-5.6°C and 11.1°C). If the heater offset is negative, the heating units will turn off at temperatures above the set point.

Set selection knob to HEAT 1-2 — OFFSET/DIFF. The current heating offset is displayed, alternating with the letters "OFT".

Use the adjustment knob to adjust the offset to the desired value.

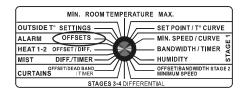

2 Adjusting Heater 1-2 Differentials

The heating differential is the temperature difference between the moment the heater units turn on and the moment they turn off (see diagram above). The differential can be adjusted between 0.5°F and 20.0°F (0.3°C and 11.1°C).

- Set the selection knob to **HEAT 1-2 OFFSET/DIFF.** The current heater offset is displayed, alternating with the letters "**OFT**".
- Press the push-button. The heater 1 differential is displayed, alternating with the letters "DIF" and "Ht.1".
- Use the adjustment knob to adjust the differential 1 to the desired value.
- Press the push-button once again. The heater 2 differential is displayed, alternating with the letters "DIF" and "Ht.2".
- Use the adjustment knob to adjust the differential 2 to the desired value.

ALARM SETTINGS

The controller sets off an alarm in the case of a power failure, a fault in the supply circuit or a high or low temperature. Temperature alarms are defined according to the set point as shown in the diagram below. The temperature alarm can either be set off if the average temperature exceeds the limits or if the reading of a single probe exceeds the limit.



The situation changes for high temperature alarms, however, when the outside temperature is greater than the set point. In this case, the set point is replaced by the outside temperature as the reference point. This means an alarm is set off when the indoor temperature reaches <u>Outside Temperature + High Alarm Offset</u>. A third parameter, called the critical high temperature, is defined to continue monitoring the indoor temperature for high temperatures. When the indoor temperature reaches the critical high temperature (defined as an absolute value), an alarm is set off.

Adjusting the Alarm Settings

The high and low alarm offsets range from 0.5°F to 40°F. The critical temperature ranges from -40.0°F to 120.0°F (-40.0°C to 48.9°C).

Set the selection knob to ALARM — OFFSETS / CRITICAL. The current low alarm offset flashes on the display, alternating with the word "LO".

- Use the adjustment knob to set the low alarm offset to the desired value.
- Press the push-button. The current high alarm offset flashes on the display, alternating with the word "HI".
- Use the adjustment knob to set the high alarm offset to the desired value
- Press the push-button. The current critical high temperature is displayed, alternating with the letters "Cri".
- Use the adjustment knob to set the critical high temperature to the desired value.
- Press the push-button. The word "ALL" or "Ind" flashes on the display.
- Use the adjustment knob to select either if an alarm is set off when the average temperature exceeds limits (ALL) or if it is set off when the reading of a single probe exceeds the limits (Ind).

TEST MODE

A test mode allows you to simulate temperature changes and verify controller performance. In test mode, the temperature probe inputs are turned off, allowing the user to change the room temperature used by the controller to operate the stages. The controller operates as before using the new temperature settings.

To enter test mode:

- Set internal switch # 12 to ON. At the ROOM TEMPERATURE position, the letters "TST" are displayed, alternating with the room temperature.
- Turn the adjustment knob to adjust the room temperature to the desired value. The controller operates the stages according to the new temperature setting.

To exit test mode:

Set internal switch # 12 to OFF.=

TROUBLESHOOTING GUIDE

PROBLEM	CAUSE	SOLUTION	
The display doesn't work.	The circuit breaker on the service panel is off or tripped.	Reset the circuit breaker.	
	The wiring is incorrect.	Fix the wiring.	
	The input fuse is open.	Replace the fuse.	
	The voltage selector switch is in the wrong position.	Set the switch to the correct position.	
	The display board interconnect cable is unplugged from the power supply board.	Plug the cable.	
The display shows the letter "P"	Probe # 1 is improperly connected.	Fix the probe's connection.	
The Defective Probe Pilot Light is on. One or more probes are defective.		Follow the procedure described in DEFECTIVE PROBES to identify and replace the defective probe.	
The display shows sud- den varia- tions in the	A variation in resistance is induced on a probe.	Make sure the probes are dry and move them away from drafts and sources of radiant heating.	
room tem- perature.	There is electrical noise near an extended probe cable.	Do not run probe cables next to other power cables. When crossing other power cables, cross at 90°.	

PROBLEM	CAUSE	SOLUTION
Stage 1-2 fans are not running. The wiring is incorrect.		Correct the wiring. In particular, make sure two different lines are connected to each motor: line L1 modulated by the controller should be combined with another line (N for 115V or L2 for 230V) to activate the motor. Also, be sure the Stage 1 COMMON is supplied by line L1.
	The Stage's fuse is open.	Replace the fuse.
	The display board interconnect cable is not plugged into the power supply board properly.	Make sure the cable is firmly plugged in with the tabs in place.
	The minimum speed is too low.	Adjust the minimum speed to a higher value.
	The fan motor is defective.	Check if motor is defective by connecting it to an alternate power supply. Replace the motor if it still doesn't operate.

PROBLEM	CAUSE	SOLUTION	
Stage 1-2 fans run continu-	The wiring is incorrect.	Fix the wiring.	
ously at full speed.	The ambient temperature is above the set point.	Adjust the set point to the desired value.	
Stage 1-2 fans run erratically.	The selected motor curve is inappropriate.	Select an appropriate motor curve.	
	The differential is too small.	Adjust the differential to a higher value.	
	The time on or time off is too short.	Adjust the time on or time off to a higher value.	
Stage 1-2 fans do not stop	Time off is set to zero.	Set time off to a value other than zero.	
running when the controller is operating in minimum ventilation cycle.	The wiring is incorrect.	Correct the wiring. In particular, make sure two different lines are connected to each motor: line L1 modulated by the controller should be combined with another line (N for 115V or L2 for 230V) to activate the motor. Also, be sure the stage 1 COMMON is supplied by line L1.	
	Humidity compensation is activated and relative humidity exceeds set point.	Adjust set point or deactivate compensation as required.	

PROBLEM	CAUSE	SOLUTION
One of the other stages is not	The Stage's fuse is open.	Replace the fuse.
operating.	The display board interconnect cable is not plugged into the power supply board properly.	Make sure the cable is firmly plugged in with the tabs in place.
	The wiring is incorrect.	Correct the wiring. In particular, make sure two different lines are connected to each motor: line L1 modulated by the controller should be combined with another line (N for 115V or L2 for 230V) to activate the motor or heating unit. Also, make sure the Stage COMMON is supplied by line L1.
	The fan motor or heating unit is defective.	Verify if the motor or heating unit is defective by connecting it to an alternate power supply. Replace the motor or heating unit If it still is not operating.
	The controller is defective.	Listen to see if there is a clicking sound when the Stage's pilot light turns on. If there is no clicking sound, contact your distributor to repair the controller.

TECHNICAL SPECIFICATIONS

Supply: -115/230 VAC (-18%, +8%), 60 Hz, L1 same phases as Stage 1, overload and overvoltage protection fuse F9-1A fast blow.

- 12 VDC for AC back-up supply; can activate stages 2, 3, 4 and 5 if supplied with DC back-up voltage.

Stage 1: Variable output, 60 Hz, 10A FAN (3/4 HP/115 VAC) / (1.5 HP/230VAC), fuse F1-15A slow blow.

Stage 2: Variable output, 60 Hz, 10A FAN (3/4 HP/115 VAC) / (1.5 HP/230VAC), fuse F2-15A slow blow.

Stage 3: ON-OFF output, 115/230 VAC, 60 Hz, 30VDC, 6A FAN, 10A RES, heating or cooling, fuse F7-15A slow blow.

Stage 4: ON-OFF output, 115/230 VAC, 60 Hz, 30VDC, 6A FAN, 10A RES, heating or cooling, fuse F8-15A slow blow.

Curtain 1 output: OPEN-CLOSE output, 115/230 VAC, 60 Hz, 30VDC, 5A winch output, fuse F3-5A fast blow.

Curtain 2 output: OPEN-CLOSE output, 115/230 VAC, 60 Hz, 30VDC, 5A winch output, fuse F5-5A fast blow.

Heater 1 output: ON-OFF output, 115/230 VAC, 60 Hz, 30VDC, 6A FAN,10A RES, heating, fuse F10-15A slow blow.

Mist/Heater2: ON-OFF output, 115/230 VAC, 60 Hz, 30VDC, 6A FAN, 10A RES, heating, fuse F9-15A slow blow.

Alarm: ON-OFF output, 115/230 VAC, 60 Hz, 30 VDC, 3A, fuse F11-3A slow blow.

Probes: Low voltage (< 5V), isolated from the supply. Operating range: -40.0° to 120.0° F (-40.0° to 48.9° C). Accuracy: 1.8° F (1° C) between 41° and 95° F (5° and 35° C).

Enclosure: ABS, moisture and dust-tight.

The room temperature where the controller is located MUST ALWAYS REMAIN BETWEEN 32° AND 104°F (0° AND 40°C).

FACTORY SETTINGS

PARAMETER		F A C T O R Y S E T T I N G	RANGE OF VALUES
Temperature Set Point		7 5 ° F (2 3 . 9 ° C)	-40 to 99.9 °F (-40 to 37.7 °C)
	Minimum Speed	4 0 %	10 % to 100 %
Stage 1	Time On	15 seconds	0 to 900 seconds by increments of 15
Stage 1	Time Off	0 seconds	seconds
	Bandwidth	2 °F (1.1 °C)	0.5 to 20 °F (0.3 to 11.1 °C)
H u m i d i t y C o n t r o l	Humidity Set Point	6 5 %	40 to 100% relative humidity
	Compensation Percentage	60%	0 to 100% of stage 1 minimum speed
Stage 2	Offset	0 . 5 ° F (0 . 3 ° C)	0 to 20 °F (0 to 11.1 °C)
	Bandwidth	2 ° F (1 . 1 ° C)	0.5 to 20 °F (0.3 to 11.1 °C)
	Min. Speed	4 0 %	10 % to 100 %
Stages 3 and 4	Differential	2 ° F (1 . 1 ° C)	0.5 to 20 °F (0.3 to 11.1 °C)
Curtains	Dead Band	2 ° F (1 . 1 ° C)	0.5 to 20 °F (0.3 to 11.1 °C)
	Time On	20 seconds	0 to 900 seconds
	Time Off	80 seconds	0 to 900 seconds
	Outside Set Point	7 0 ° F (2 1 ° C)	-40 to 99.9 °F (-40 to 37.7 °C)

РА	RAMETER	F A C T O R Y S E T T I N G	RANGE OF VALUES
Mist	Time On	60 seconds	0 to 900 seconds in increments of 15
	Time Off	600 seconds	seconds
	Differential	2°F(1.1°C)	0.5 to 20 °F (0.3 to 11.1 °C)
	Humidity Turn Off Level	9 5 %	40 to 100% relative humidity
Heater 1 - 2	Differential	2°F(1.1°C)	0.5 to 20 °F (0.3 to 11.1 °C)
	Offset	2.0°F(1.1°C)	-10 to 20 °F (-5.6 to 11.1 °C)
Alarms	High Offset	12.0°F(6.7°C)	0.5 to 40 °F (0.3 to 22 °C)
	Low Offset	10.0°F(5.6°C)	0.5 to 40 °F (0.3 to 22 °C)
	Critical High Temperature	95°F (35°C)	-40 to 120.0 °F (-40 to 48.9 °C)

NOTES:

- i) These initial parameter settings will not be retained in the controller's memory. Each new setting will replace the preceding one.
- ii) If the power supply is cut off, the last parameter settings will be retained in memory until the power is restored.

GLOSSARY

BANDWIDTH: The temperature interval within which the variable-speed fans of a given stage increase or decrease in speed proportionally to the temperature.

CASCADING HEATERS: Heaters operate in a sequence. As the average room temperature drops, additional heaters are turned on as needed.

CURTAIN DEAD BAND: The dead band is the temperature difference between the opening and closing temperatures of the curtains. Within this interval, the curtains are at rest.

DEFAULT VALUE: A typical parameter setting defined at the factory.

DIFFERENTIAL: The differential is the temperature difference between the moment the constant-speed fans or heating units of a given stage start running and the moment they return to a stop.

HYSTERESIS: A hysteresis is used to smooth the transition from one state to another. For example, when the temperature drops to the cut-off point for a stage of constant-speed fans, the fans will actually be cut off at slightly less than the cut-off point. This way, if the temperature fluctuates around the cut-off point without dropping significantly below it, the controller will not oscillate between two states. For example, if the hysteresis is 0.3°F and the stage 2 fans are programmed to be cut off at 75°F, the cutoff will actually occur at 74.7°F.

MINIMUM VENTILATION CYCLE: When the room temperature is below the set point, the Stage 1 fans operate intermittently to provide minimum ventilation to the room.

MINIMUM VENTILATION SPEED CURVE: When Stage 1 operates variable-speed fans, they will run at minimum speed during the minimum ventilation cycle. The user can define a minimum ventilation speed curve to adjust the Stage 1 minimum speed automatically over a given time period. The minimum speed increases over time as the animals grow.

OFFSET: An offset is a temperature difference from the set point that normally defines a cut-off point for a stage operation. For example, a heater offset of 2°F means the heaters will turn off at 2°F below the set point.

RAMPING ON STAGE 1: When the temperature rises to the point where Stage 1 constant-speed fans are needed for cooling, the running time of the fans is increased gradually from the minimum ventilation settings up to full operation. Likewise, when the temperature drops below the set point, the running time is decreased gradually until the minimum ventilation settings are reached.

SET POINT: The set point is the target room temperature. When the temperature is above the set point, the controller cools the room by turning on the cooling fans. When the temperature is below the set point, the controller heats the room by turning on the heaters.

TEMPERATURE CURVE: The controller can be set to automatically change the temperature set point over a given period of time in accordance with the user's requirements. The set point decreases over time as the animals grow.